Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; 15(2): e0274923, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38193684

RESUMO

Microsporidia are obligate intracellular parasites that infect a wide variety of hosts including humans. Microsporidian spores possess a unique, highly specialized invasion apparatus involving the polar filament, polaroplast, and posterior vacuole. During spore germination, the polar filament is discharged out of the spore forming a hollow polar tube that transports the sporoplasm components including the nucleus into the host cell. Due to the complicated topological changes occurring in this process, the details of sporoplasm formation are not clear. Our data suggest that the limiting membrane of the nascent sporoplasm is formed by the polaroplast after microsporidian germination. Using electron microscopy and 1,1'-dioctadecyl-3,3,3',3' tetramethyl indocarbocyanine perchlorate staining, we describe that a large number of vesicles, nucleus, and other cytoplasm contents were transported out via the polar tube during spore germination, while the posterior vacuole and plasma membrane finally remained in the empty spore coat. Two Nosema bombycis sporoplasm surface proteins (NbTMP1 and NoboABCG1.1) were also found to localize in the region of the polaroplast and posterior vacuole in mature spores and in the discharged polar tube, which suggested that the polaroplast during transport through the polar tube became the limiting membrane of the sporoplasm. The analysis results of Golgi-tracker green and Golgi marker protein syntaxin 6 were also consistent with the model of the transported polaroplast derived from Golgi transformed into the nascent sporoplasm membrane.IMPORTANCEMicrosporidia, which are obligate intracellular pathogenic organisms, cause huge economic losses in agriculture and even threaten human health. The key to successful infection by the microsporidia is their unique invasion apparatus which includes the polar filament, polaroplast, and posterior vacuole. When the mature spore is activated to geminate, the polar filament uncoils and undergoes a rapid transition into the hollow polar tube that transports the sporoplasm components including the microsporidian nucleus into host cells. Details of the structural difference between the polar filament and polar tube, the process of cargo transport in extruded polar tube, and the formation of the sporoplasm membrane are still poorly understood. Herein, we verify that the polar filament evaginates to form the polar tube, which serves as a conduit for transporting the nucleus and other sporoplasm components. Furthermore, our results indicate that the transported polaroplast transforms into the sporoplasm membrane during spore germination. Our study provides new insights into the cargo transportation process of the polar tube and origin of the sporoplasm membrane, which provide important clarification of the microsporidian infection mechanism.


Assuntos
Microsporídios , Humanos , Esporos Fúngicos , Citoplasma , Microscopia Eletrônica , Membrana Celular , Bandagens
2.
PLoS Pathog ; 19(12): e1011859, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38060601

RESUMO

Microsporidia are a group of obligate intracellular parasites that infect almost all animals, causing serious human diseases and major economic losses to the farming industry. Nosema bombycis is a typical microsporidium that infects multiple lepidopteran insects via fecal-oral and transovarial transmission (TOT); however, the underlying TOT processes and mechanisms remain unknown. Here, we characterized the TOT process and identified key factors enabling N. bombycis to invade the ovariole and oocyte of silkworm Bombyx mori. We found that the parasites commenced with TOT at the early pupal stage when ovarioles penetrated the ovary wall and were exposed to the hemolymph. Subsequently, the parasites in hemolymph and hemolymph cells firstly infiltrated the ovariole sheath, from where they invaded the oocyte via two routes: (I) infecting follicular cells, thereby penetrating oocytes after proliferation, and (II) infecting nurse cells, thus entering oocytes following replication. In follicle and nurse cells, the parasites restructured and built large vacuoles to deliver themselves into the oocyte. In the whole process, the parasites were coated with B. mori vitellogenin (BmVg) on their surfaces. To investigate the BmVg effects on TOT, we suppressed its expression and found a dramatic decrease of pathogen load in both ovarioles and eggs, suggesting that BmVg plays a crucial role in the TOT. Thereby, we identified the BmVg domains and parasite spore wall proteins (SWPs) mediating the interaction, and demonstrated that the von Willebrand domain (VWD) interacted with SWP12, SWP26 and SWP30, and the unknown function domain (DUF1943) bound with the SWP30. When disrupting these interactions, we found significant reductions of the pathogen load in both ovarioles and eggs, suggesting that the interplays between BmVg and SWPs were vital for the TOT. In conclusion, our study has elucidated key aspects about the microsporidian TOT and revealed the key factors for understanding the molecular mechanisms underlying this transmission.


Assuntos
Bombyx , Nosema , Animais , Humanos , Vitelogeninas/metabolismo , Esporos Fúngicos/metabolismo , Nosema/metabolismo , Bombyx/metabolismo
3.
Parasit Vectors ; 16(1): 305, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37649053

RESUMO

Microsporidia are a class of obligate intracellular parasitic unicellular eukaryotes that infect a variety of hosts, even including humans. Although different species of microsporidia differ in host range and specificity, they all share a similar infection organelle, the polar tube, which is also defined as the polar filament in mature spores. In response to the appropriate environmental stimulation, the spore germinates with the polar filament everted, forming a hollow polar tube, and then the infectious cargo is transported into host cells via the polar tube. Hence, the polar tube plays a key role in microsporidian infection. Here, we review the origin, structure, composition, function, and application of the microsporidian polar tube, focusing on the origin of the polar filament, the structural differences between the polar filament and polar tube, and the characteristics of polar tube proteins. Comparing the three-dimensional structure of PTP6 homologous proteins provides new insight for the screening of additional novel polar tube proteins with low sequence similarity in microsporidia. In addition, the interaction of the polar tube with the spore wall and the host are summarized to better understand the infection mechanism of microsporidia. Due to the specificity of polar tube proteins, they are also used as the target in the diagnosis and prevention of microsporidiosis. With the present findings, we propose a future study on the polar tube of microsporidia.


Assuntos
Microsporídios , Microsporidiose , Humanos , Transporte Biológico , Parede Celular , Citoesqueleto
4.
J Fungi (Basel) ; 9(7)2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37504762

RESUMO

Microsporidia are a large group of mysterious obligate intracellular eukaryotic parasites. The microsporidian spore can survive in the absence of nutrients for years under harsh conditions and germinate within seconds under the stimulation of environmental changes like pH and ions. During germination, microsporidia experience an increase in intrasporal osmotic pressure, which leads to an influx of water into the spore, followed by swelling of the polaroplasts and posterior vacuole, which eventually fires the polar filament (PF). Infectious sporoplasm was transported through the extruded polar tube (PT) and delivered into the host cell. Despite much that has been learned about the germination of microsporidia, there are still several major questions that remain unanswered, including: (i) There is still a lack of knowledge about the signaling pathways involved in spore germination. (ii) The germination of spores is not well understood in terms of its specific energetics. (iii) Limited understanding of how spores germinate and how the nucleus and membranes are rearranged during germination. (iv) Only a few proteins in the invasion organelles have been identified; many more are likely undiscovered. This review summarizes the major resolved and unresolved issues concerning the process of microsporidian spore germination.

5.
Int J Mol Sci ; 23(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36232879

RESUMO

Enterocytozoon hepatopenaei (EHP) is the pathogen of hepatopancreatic microsporidiosis (HPM) in shrimp. The diseased shrimp Litopenaeus vannamei exhibits a slow growth syndrome, which causes severe economic losses. Herein, 4D label-free quantitative proteomics was employed to analyze the hepatopancreas of L. vannamei with a light (EHPptp2 < 103 copies/50 ng hpDNA, L group) and heavy (EHPptp2 > 104 copies/50 ng hpDNA, H group) load of EHP to better understand the pathogenesis of HPM. Exactly 786 (L group) and 1056 (H group) differentially expressed proteins (DEPs) versus the EHP-free (C group) control were mainly clustered to lipid metabolism, amino acid metabolism, and energy production processing. Compared with the L group, the H group exhibited down-regulation significantly in lipid metabolism, especially in the elongation and degradation of fatty acid, biosynthesis of unsaturated fatty acid, metabolism of α-linolenic acid, sphingolipid, and glycerolipid, as well as juvenile hormone (JH) degradation. Expression pattern analysis showed that the degree of infection was positively correlated with metabolic change. About 479 EHP proteins were detected in infected shrimps, including 95 predicted transporters. These findings suggest that EHP infection induced the consumption of storage lipids and the entire down-regulation of lipid metabolism and the coupling energy production, in addition to the hormone metabolism disorder. These were ultimately responsible for the stunted growth.


Assuntos
Hepatopâncreas , Penaeidae , Aminoácidos , Animais , Regulação para Baixo , Enterocytozoon , Hormônios , Hormônios Juvenis , Metabolismo dos Lipídeos , Proteômica , Esfingolipídeos , Ácido alfa-Linolênico
6.
J Fungi (Basel) ; 8(8)2022 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-35893133

RESUMO

Microsporidia are a big group of single-celled obligate intracellular organisms infecting most animals and some protozoans. These minimalist eukaryotes lack numerous genes in metabolism and vesicle trafficking. Here, we demonstrated that the spore wall protein NbSWP12 of microsporidium Nosema bombycis belongs to Bin/Amphiphysin/Rvs (BAR) protein family and can specifically bind with phosphatidylinositol 3-phosphate [Ptdlns(3)P]. Since Ptdlns(3)P is involved in endosomal vesicle biogenesis and trafficking, we heterologous expressed NbSWP12 in yeast Saccharomyces cerevisiae and proved that NbSWP12 can target the cell membrane and endocytic vesicles. Nbswp12 transformed into Gvp36 (a BAR protein of S. cerevisiae) deletion mutant rescued the defect phenotype of vesicular traffic. This study identified a BAR protein function in vesicle genesis and sorting and provided clues for further understanding of how microsporidia internalize nutrients and metabolites during proliferation.

7.
J Proteomics ; 263: 104617, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35595055

RESUMO

Microsporidium is a kind of intracellular fungal pathogen that greatly threatens the human health, breeding industry, and food security. All members of microsporidia possess a unique, highly specialized invasion organelle, described as the polar filament. Like "reversing a finger of gloves", the polar filament discharges out of mature spores to transform as the polar tube, and pathogenic sporoplasm is transported to host cell through polar tube to complete infection. During the invasion process, the structure of polar filament and polar tube has changed, so does the protein composition on them? In this study, we firstly proposed a purification method for polar filament and polar tube from microsporidium Nosema bombycis which was infected silkworm Bombyx mori, and it was also found that the structure of polar filament and polar tube was obviously different. Therefore, the proteome of these two structures was comparatively analyzed. A total of 881 and 1216 proteins were respectively identified from the polar filament and polar tube. Ten potential novel polar tube proteins (PTPs) were screened, providing a reference for the novel PTPs identification. Compared with the polar filament, there were 35 upregulated and 41 downregulated proteins on the polar tube. GO and KEGG pathway analysis of all proteins from the polar filament and polar tube provided us with a profound understanding for the microsporidian germination process, which was of great significance for clarifying the infection mechanism of microsporidia. SIGNIFICANCE: Microsporidia are obligate intracellular parasites that infect a wide variety of hosts, including humans. The polar filament is a unique invasion organelle for microsporidia, and it is also one of the important indexes of microsporidian taxonomy. The polar tube is deformed from the primitive polar filament in mature spores. During the germination, the polar filament turns into a polar tube, like "reversing a finger of gloves", through which pathogenic sporoplasm is transported to host cells to complete infection. Since the structure of the polar filament and polar tube has changed, what about their protein composition? In this study, it was the first time to purify the polar filament and the polar tube from microsporidium Nosema bombycis that was infected silkworm Bombyx mori, which provided new insights for studying the invasion organelle of microsporidia. Comparing the fine structure of polar filament and polar tube, we found that their structure was obviously different. Therefore, the protein composition of these two structures is supposed to be varied. In this case, the proteome of these two structures was comparatively analyzed. A total of 881 and 1216 proteins were respectively identified from the polar filament and polar tube. Ten potential novel polar tube proteins (PTPs) were screened, providing a reference for the novel PTPs identification. Compared with the polar filament, there were 35 upregulated and 41 downregulated proteins on the polar tube. GO and KEGG pathway analysis of all proteins from the polar filament and polar tube provided us with a profound understanding for the microsporidian germination process, which was of great significance for clarifying the infection mechanism of microsporidia.


Assuntos
Bombyx , Microsporídios não Classificados , Organelas , Proteoma , Animais , Bombyx/metabolismo , Bombyx/microbiologia , Proteínas Fúngicas/metabolismo , Microsporídios não Classificados/química , Microsporídios não Classificados/metabolismo , Nosema , Organelas/química , Organelas/metabolismo , Melhoramento Vegetal , Proteoma/metabolismo , Proteômica/métodos , Esporos Fúngicos/metabolismo
8.
Microorganisms ; 10(2)2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35208822

RESUMO

Enterocytozoon hepatopenaei, a spore-forming and obligate intracellular microsporidium, mainly infects shrimp and results in growth retardation and body length variation, causing huge economic losses to the Asian shrimp aquaculture industry. However, the lack of a full understanding of the surface proteins of spores associated with host infection has hindered the development of technologies for the detection of EHP. In this study, the surface proteins of EHP spores were extracted using the improved SDS method, and 130 proteins were identified via LC-MS/MS analysis. Bioinformatic analysis revealed that these proteins were enriched in biological processes (67), cellular components (62), and molecular functions (71) based on GO terms. KEGG pathway analysis showed that 20 pathways, including the proteasome (eight proteins) and the fatty acid metabolism (15 proteins), were enriched. Among 15 high-abundance surface proteins (HASPs), EhSWP3 was identified as a novel spore wall protein (SWP), and was localized on the endospore of the EHP spores with an indirect immunofluorescence and immunoelectron microscopy assay. Polyclonal antibodies against EhSWP3 showed strong species specificity and high sensitivity to the hepatopancreas of EHP-infected shrimp. As a specific high-abundance protein, EhSWP3 is therefore a promising target for the development of immunoassay tools for EHP detection, and may play a crucial role in the invasion of EHP into the host.

9.
J Invertebr Pathol ; 183: 107600, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33961882

RESUMO

The single-celled pathogen Nosema bombycis, that can infect silkworm Bombyx mori and other lepidoptera including Spodoptera, is the first identified Microsporidia which has diplokaryotic nuclei throughout the life cycle. Septin proteins can form highly ordered filaments, bundles or ring structures related to the cytokinesis in fungi. Here, three septin proteins (NbSeptin1, NbSeptin2 and NbSeptin3) from Nosema bombycis CQ I are described. These proteins, appear to be conserved within the phylum Microsporidia. NbSeptins transcripts were detected throughout the pathogen developmental cycle and were significantly enhanced from second days of infection, which lead to our hypothesis that NbSeptins play a role in merogony. Immunofluorescence assay (IFA) revealed a broad distribution of NbSeptins in meronts and partly co-localization of NbSeptins. Interestingly, in some of meronts, NbSeptin2 and NbSeptin3 showed localization between the nuclei of the diplokaryon. Yeast two-hybrid and co-immunoprecipitation analysis verified that NbSeptins can interact with each other. Our findings suggest that NbSeptins can cooperate in the proliferation stage of Nosema bombycis and contribute towards the understanding of the rols of septins in microsporidia development.


Assuntos
Nosema/fisiologia , Septinas/genética , Esporos Fúngicos/fisiologia , Sequência de Aminoácidos , Animais , Bombyx/crescimento & desenvolvimento , Bombyx/microbiologia , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Larva/crescimento & desenvolvimento , Larva/microbiologia , Nosema/genética , Nosema/crescimento & desenvolvimento , Filogenia , Septinas/química , Septinas/metabolismo , Alinhamento de Sequência
10.
Microorganisms ; 8(9)2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32906623

RESUMO

Enterocytozoon hepatopenaei (EHP) is an obligate, intracellular, spore-forming parasite, which mainly infects the gastrointestinal tract of shrimp. It significantly hinders the growth of shrimp, which causes substantial economic losses in farming. In this study, we established and optimized a SYBR Green I fluorescent quantitative PCR (qPCR) assay based on the polar tube protein 2 (PTP2) gene for the quantitative analysis of EHP-infected shrimp. The result showed that the optimum annealing temperature was 60 °C for the corresponding relation between the amplification quantitative (Cq) and the logarithmic of the initial template quantity (x), conformed to Cq = -3.2751x + 31.269 with a correlation coefficient R2 = 0.993. The amplification efficiency was 102%. This qPCR method also showed high sensitivity, specificity, and repeatability. Moreover, a microscopy method was developed to observe and count EHP spores in hepatopancreas tissue of EHP-infected shrimp using Fluorescent Brightener 28 staining. By comparing the PTP2-qPCR and microscopy method, the microscopic examination was easier to operate whereas PTP2-qPCR was more sensitive for analysis. And we found that there was a correspondence between the results of these two methods. In summary, the PTP2-qPCR method integrated microscopy could serve for EHP detection during the whole period of shrimp farming and satisfy different requirements for detecting EHP in shrimp farming.

11.
Parasit Vectors ; 13(1): 475, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32933572

RESUMO

BACKGROUND: Microsporidians are opportunistic pathogens with a wide range of hosts, including invertebrates, vertebrates and even humans. Microsporidians possess a highly specialized invasion structure, the polar tube. When spores encounter an appropriate environmental stimulation, the polar tube rapidly everts out of the spore, forming a 50-500 µm hollow tube that serves as a conduit for sporoplasm passage into host cells. The polar tube is mainly composed of polar tube proteins (PTPs). So far, five major polar tube proteins have been isolated from microsporidians. Nosema bombycis, the first identified microsporidian, infects the economically important insect silkworm and causes heavy financial loss to the sericulture industry annually. RESULTS: A novel polar tube protein of N. bombycis (NbPTP6) was identified. NbPTP6 was rich in histidine (H) and serine (S), which contained a signal peptide of 16 amino acids at the N-terminus. NbPTP6 also had 6 potential O-glycosylation sites and 1 potential N-glycosylation site. The sequence alignment analysis revealed that NbPTP6 was homologous with uncharacterized proteins from other microsporidians (Encephalitozoon cuniculi, E. hellem and N. ceranae). Additionally, the NbPTP6 gene was expressed in mature N. bombycis spores. Indirect immunofluorescence analysis (IFA) result showed that NbPTP6 is localized on the whole polar tube of the germinated spores. Moreover, IFA, enzyme-linked immunosorbent (ELISA) and fluorescence-activated cell sorting (FACS) assays results revealed that NbPTP6 had cell-binding ability. CONCLUSIONS: Based on our results, we have confirmed that NbPTP6 is a novel microsporidian polar tube protein. This protein could adhere with the host cell surface, so we speculated it might play an important role in the process of microsporidian infection.


Assuntos
Proteínas Fúngicas/metabolismo , Nosema/metabolismo , Sequência de Aminoácidos , Animais , Bombyx/microbiologia , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Nosema/classificação , Nosema/genética , Nosema/crescimento & desenvolvimento , Alinhamento de Sequência , Esporos Fúngicos/química , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/metabolismo
12.
J Invertebr Pathol ; 172: 107350, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32194029

RESUMO

Nosema bombycis, the first identified microsporidium, causes heavy losses to the sericulture industry in China. During infection, microsporidia discharge a long and hollow polar tube, which delivers the sporoplasm into host cells. Polar tube protein 1 was the major component on the polar tube. Previously, we expressed the polar tube protein 1 from Nosema bombycis (NbPTP1) intercellularly in Drosophila S2 cells. Here, the microsporidian protein was expressed in Lepidopteran Sf9 cells. During heterologous expression, NbPTP1 protein was secreted and glycosylated. Microsporidian proliferation decreased in NbPTP1-expressing Sf9 cells. This confirms that NbPTP1 protein can interact with the host cell membrane receptor protein to facilitate microsporidian invasion.


Assuntos
Proteínas Fúngicas/genética , Nosema/fisiologia , Spodoptera/microbiologia , Animais , Proteínas Fúngicas/metabolismo , Nosema/genética , Células Sf9/microbiologia
13.
J Eukaryot Microbiol ; 67(1): 45-53, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31332864

RESUMO

Nosema bombycis (Nb) is a deadly species of microsporidia capable of causing pébrine, leading to heavy losses in sericulture. Germination is an important biological event in the invasion process of microsporidia. Septins, a family of membrane-associated proteins, play a critical role in tissue invasion and have been recognized as a virulence factor in numerous pathogens. Previous work in our laboratory has shown that Nosema bombycis septin2 (Nbseptin2) interacts with subtilisin-like protease 2 (NbSLP2). Herein, we found that Nbseptin2 was mainly associated with the plasma membrane in spores. Following spore germination, Nbseptin2 was found to co-localize with polar tube protein 1 (NbPTP1) at the polar cap and proximal zone of the polar tube. Co-immunoprecipitation and yeast two-hybrid analysis further confirmed that Nbseptin2 interacted with NbPTP1. The translocation and interaction of Nbseptin2 in the spores suggest that Nbseptin2 may play a significant role in microsporidia polar tube extrusion process. Our findings improve understanding of the mechanisms underlying microsporidia germination.


Assuntos
Proteínas de Transporte/genética , Proteínas Fúngicas/genética , Nosema/genética , Septinas/genética , Sequência de Aminoácidos , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Parede Celular/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Perfilação da Expressão Gênica , Nosema/metabolismo , Septinas/química , Septinas/metabolismo , Alinhamento de Sequência , Esporos Fúngicos/metabolismo
14.
J Invertebr Pathol ; 169: 107310, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31862268

RESUMO

Nosema bombycis is an obligate intracellular pathogen that can be transmitted vertically from infected females to eggs, resulting in congenital infections in embryos. Here we investigated the proliferation characteristics of N. bombycis in silkworm embryos using a histopathological approach and deep RNA sequencing. We found that N. bombycis proliferated mainly around yolk granules at the early stage of the embryonic development, 1-2 days post oviposition (dpo). At 4-6 dpo, a portion of N. bombycis in different stages adjacent to the embryo were packaged into the newly formed intestinal lumen, while the remaining parasites continued to proliferate around yolk granules. In the newly hatched larvae (9 dpo), the newly formed spores accumulated in the gut lumen and immediately were released into the environment via the faeces. Transcriptional profiling of N. bombycis further confirmed multiplication of N. bombycis throughout every stage of embryonic development. Additionally, the increased transcriptional level of spore wall proteins and polar tube proteins from 4 dpo indicated an active formation of mature spores. Taken together, our results have provided a characterization of the proliferation of this intracellular microsporidian pathogen in congenitally infected embryos leading to vertical transmission.


Assuntos
Bombyx/microbiologia , Interações Hospedeiro-Patógeno , Nosema/fisiologia , Animais , Bombyx/embriologia , Bombyx/crescimento & desenvolvimento , Embrião não Mamífero/microbiologia , Larva/crescimento & desenvolvimento , Larva/microbiologia , RNA-Seq
15.
Front Microbiol ; 10: 2825, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31866985

RESUMO

The dual roles of baculovirus for the control of natural insect populations as an insecticide, and as a tool for foreign gene expression and delivery, have called for a comprehensive understanding of the molecular mechanisms governing viral infection. Here, we demonstrate that the Bombyx mori Niemann-Pick C1 (BmNPC1) is essential for baculovirus infection in insect cells. Both pretreatment of B. mori embryonic cells (BmE) with NPC1 antagonists (imipramine or U18666A) and down-regulation of NPC1 expression resulted in a significant reduction in baculovirus BmNPV (B. mori nuclear polyhedrosis virus) infectivity. Disruption of BmNPC1 could decrease viral entry (2 hpi) rather than reduce the viral binding to the BmE cells. Furthermore, our results showed that NPC1 domain C binds directly and specifically to the viral glycoprotein GP64, which is responsible for both receptor binding and fusion. Antibody blocking assay also revealed that the domain C specific polyclonal antibody inhibited BmNPV infection, indicating that NPC1 domain C most likely plays a role during viral fusion in endosomal compartments. Our results, combined with previous studies identifying an essential role of human NPC1 (hNPC1) in filovirus infection, suggest that the glycoprotein of several enveloped viruses possess a shared strategy of exploiting host NPC1 proteins during virus intracellular entry events.

16.
J Invertebr Pathol ; 164: 59-65, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31039370

RESUMO

Nosema bombycis, the pathogen of silkworm pébrine, causes enormous economic losses to sericulture. As such, quarantine of commercial silkworm eggs represents an important safeguard to the silkworm industry. Here, we established a user-friendly detection system based on a nucleic acid lateral flow strip (NAFLS) that combines polymerase chain reaction (PCR) and a colloidal gold strip. PCR primers were designed based on the sequence of LSU rDNA of N. bombycis and has favourable specificity for common microsporidian isolates in silkworms. The forward and reverse primers were labeled on the 5' end with biotin and carboxyfluorescein (FAM), respectively. Genomic DNA was extracted from egg samples and was used as a template for PCR, followed by subsequent detection by NALFS. The detection limit of purified N. bombycis genomic DNA was 1 pg, 100× more sensitive than that of agarose gel electrophoresis (AGE). Furthermore, the sensitivity of detection of simulated "infected" silkworm eggs was 10-100× higher than that of AGE. NALFS detected infection in 27 of 29 samples of silkworm eggs oviposited by female moths infected in lab; ≥2% infected eggs per batch are detected as positive, while ≥40% infected eggs per batch are required for detection by AGE. Collectively, NALFS is easy to use and has great potential for widespread use in the detection of N. bombycis in silkworm egg production.


Assuntos
Bombyx/microbiologia , Microsporidiose/diagnóstico , Nosema/isolamento & purificação , Animais , Óvulo/microbiologia , Patologia Molecular/métodos
17.
Sheng Wu Gong Cheng Xue Bao ; 34(9): 1460-1468, 2018 Sep 25.
Artigo em Chinês | MEDLINE | ID: mdl-30255680

RESUMO

The polar tube protein is the major component of polar tube, and can specifically locate on the polar tube of microsporidia and plays an important role in invasion host cell. In this study, we analyzed the potential O- and Nglycosylation sites in polar tube protein 1 from Nosema bombycis. NbPTP1 was successfully cloned to eukaryotic expression vector pMT/Bip/V5-His A, involved V5 and His tags. After transfection, NbPTP1 gene could be efficiently expressed in Drosophila S2 cells. In addition, Lectin blotting and beta elimination analysis showed that NbPTP1 expressed in Drosophila S2 cells was O-glycosylation. These studies provided a basis for understanding the relationship between glycosylation and function of NbPTP1, helped us to reveal the infection mechanism of microsporidia and established effective diagnosis and prevention methods for microsporidia.


Assuntos
Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/química , Nosema/química , Animais , Linhagem Celular , Drosophila/citologia , Vetores Genéticos , Glicosilação , Transfecção
18.
J Invertebr Pathol ; 149: 36-43, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28668257

RESUMO

Nosema bombycis is an obligate intracellular parasite, which can cause pébrine disease. To investigate the effects of N. bombycis infection, 5th-instar silkworms were challenged with N. bombycis isolate CQ1, and two-dimensional gel electrophoresis analysis was performed to analyze the differentially expressed proteins in infected and uninfected silkworm fat bodies 1, 2, 4, 6 and 8days post-infection (dpi). 46 differentially expressed proteins were identified at the 5 time points using MALDI-TOF/TOF MS. The changed proteins mainly involved in immune response, energy metabolism, and molecular synthesis. Overall, the identified proteins may provide important insights into the mechanisms of the silkworm response to N. bombycis infection.


Assuntos
Bombyx/metabolismo , Bombyx/microbiologia , Corpo Adiposo/metabolismo , Microsporidiose/metabolismo , Nosema/fisiologia , Animais , Proteômica
19.
PLoS One ; 12(6): e0179618, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28640848

RESUMO

Microsporidia are eukaryotic, unicellular parasites that have been studied for more than 150 years. These organisms are extraordinary in their ability to invade a wide range of hosts including vertebrates and invertebrates, such as human and commercially important animals. A lack of appropriate labeling methods has limited the research of the cell cycle and protein locations in intracellular stages. In this report, an easy fluorescent labeling method has been developed to mark the proliferative and sporogonic phases of microsporidia Nosema bombycis in host cells. Based on the presence of chitin, Calcofluor White M2R was used to label the sporogonic phase, while ß-tubulin antibody coupled with fluorescence secondary antibody were used to label the proliferative phase by immunofluorescence. This method is simple, efficient and can be used on both infected cells and tissue slices, providing a great potential application in microsporidia research.


Assuntos
Nosema/fisiologia , Esporos Fúngicos/fisiologia , Regulação Fúngica da Expressão Gênica , Espaço Intracelular/metabolismo , Nosema/citologia , Nosema/genética , Tubulina (Proteína)/genética
20.
PLoS Pathog ; 13(4): e1006341, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28426751

RESUMO

Microsporidia have been identified as pathogens that have important effects on our health, food security and economy. A key to the success of these obligate intracellular pathogens is their unique invasion organelle, the polar tube, which delivers the nucleus containing sporoplasm into host cells during invasion. Due to the size of the polar tube, the rapidity of polar tube discharge and sporoplasm passage, and the absence of genetic techniques for the manipulation of microsporidia, study of this organelle has been difficult and there is relatively little known regarding polar tube formation and the function of the proteins making up this structure. Herein, we have characterized polar tube protein 4 (PTP4) from the microsporidium Encephalitozoon hellem and found that a monoclonal antibody to PTP4 labels the tip of the polar tube suggesting that PTP4 might be involved in a direct interaction with host cell proteins during invasion. Further analyses employing indirect immunofluorescence (IFA), enzyme-linked immunosorbent (ELISA) and fluorescence-activated cell sorting (FACS) assays confirmed that PTP4 binds to mammalian cells. The addition of either recombinant PTP4 protein or anti-PTP4 antibody reduced microsporidian infection of its host cells in vitro. Proteomic analysis of PTP4 bound to host cell membranes purified by immunoprecipitation identified transferrin receptor 1 (TfR1) as a potential host cell interacting partner for PTP4. Additional experiments revealed that knocking out TfR1, adding TfR1 recombinant protein into cell culture, or adding anti-TfR1 antibody into cell culture significantly reduced microsporidian infection rates. These results indicate that PTP4 is an important protein competent of the polar tube involved in the mechanism of host cell infection utilized by these pathogens.


Assuntos
Anticorpos Antifúngicos/imunologia , Encephalitozoon/genética , Encefalitozoonose/microbiologia , Proteínas Fúngicas/metabolismo , Proteômica , Animais , Membrana Celular/metabolismo , Cricetinae , Cricetulus , Encephalitozoon/imunologia , Encephalitozoon/patogenicidade , Encephalitozoon/ultraestrutura , Encefalitozoonose/patologia , Proteínas Fúngicas/genética , Organelas/metabolismo , Organelas/ultraestrutura , Coelhos , Receptores da Transferrina/genética , Receptores da Transferrina/metabolismo , Proteínas Recombinantes , Esporos Fúngicos/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...